Sources
This page contains bibliographic information for the sources referenced in the source column of the techno-economic data files.
| Identifier | Bibliographic information | Link |
|---|---|---|
| Zainul Abdin, Kaveh Khalilpour, and Kylie Catchpole. Projecting the levelized cost of large scale hydrogen storage for stationary applications. Energy Conversion and Management, 270:116241, 2022. | DOI | |
| Agora Energiewende, FutureCamp, and Wuppertal Institut. Klimaschutzverträge für die Industrietransformation: Rechner für die Abschätzung der Transformationskosten einer klimafreundlichen Primärstahlproduktion. 2022. Version 1.1. | Link | |
| Amjad Al-Qahtani, Brett Parkinson, Klaus Hellgardt, Nilay Shah, and Gonzalo Guillen-Gosalbez. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Applied Energy, 281:115958, Jan 2021. | DOI | |
| Carlos Arnaiz del Pozo and Schalk Cloete. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Conversion and Management, 255:115312, Mar 2022. | DOI | |
| Alexis Michael Bazzanella and Florian Ausfelder. Low carbon energy and feedstock for the European chemical industry. Technical Report, German Society for Chemical Engineering and Biotechnology (DECHEMA) and released by the European Chemical Industry Council (Cefic), 2017. | Link | |
| M.J. Bos, S.R.A. Kersten, and D.W.F. Brilman. Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Applied Energy, 264:114672, 2020. | DOI | |
| Robert Gary Boundy, Susan W Diegel, Lynn L Wright, and Stacy Cagle Davis. Biomass Energy Data Book: Edition 4. Oak Ridge National Laboratory, 2011. | DOI | |
| Gregor Brändle, Max Schönfisch, and Simon Schulte. Estimating long-term global supply costs for low-carbon hydrogen. Applied Energy, 302:117481, Nov 2021. | DOI | |
| Patrick Buchenberg, Thushara Addanki, David Franzmann, Christoph Winkler, Felix Lippkau, Thomas Hamacher, Philipp Kuhn, Heidi Heinrichs, and Markus Blesl. Global Potentials and Costs of Synfuels via Fischer–Tropsch Process. Energies, 2023. | Link | |
| Elizabeth Connelly, Michael Penev, Amgad Elgowainy, and Chad Hunter. Current Status of Hydrogen Liquefaction Costs. Technical Report, DOE, 2019. | ||
| Danish Energy Agency. Technology Data for Renewable Fuels. Aug 2023. | Link | |
| Edoardo De Lena, Maurizio Spinelli, Manuele Gatti, Roberto Scaccabarozzi, Stefano Campanari, Stefano Consonni, Giovanni Cinti, and Matteo C. Romano. Techno-economic analysis of calcium looping processes for low CO2 emission cement plants. International Journal of Greenhouse Gas Control, 82:244–260, March 2019. | DOI | |
| Alexandra Devlin and Aidong Yang. Regional supply chains for decarbonising steel: Energy efficiency and green premium mitigation. Energy Conversion and Management, 254:115268, Feb 2022. | DOI | |
| Arnab Dutta, Iftekhar A. Karimi, and Shamsuzzaman Farooq. Technoeconomic Perspective on Natural Gas Liquids and Methanol as Potential Feedstocks for Producing Olefins. Industrial & Engineering Chemistry Research, 58(2):963–972, January 2019. Publisher: American Chemical Society. | DOI | |
| ECORYS. Study on the Competitiveness of the European Steel Sector. Technical Report, ECORYS, Danish Technological Institute, Cambridge Econometrics, CES IFO, and IDEA Consult, 2008. | Link | |
| ETB-ND. Fuels. Higher and Lower Calorific Values. | Link | |
| European Commission. Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals — Ammonia, Acids and Fertilisers. Technical Report, European Commission, 2007. | Link | |
| M. Fasihi, D. Bogdanov, and C. Breyer. Economics of Global LNG Trading Based on Hybrid PV-Wind Power Plants. 31st European Photovoltaic Solar Energy Conference and Exhibition; 3051-3067, 2015. | DOI | |
| Mahdi Fasihi, Dmitrii Bogdanov, and Christian Breyer. Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants. Energy Procedia, 99:243–268, 2016. | DOI | |
| Mahdi Fasihi, Olga Efimova, and Christian Breyer. Techno-economic assessment of CO2 direct air capture plants. Journal of Cleaner Production, 224:957–980, Jul 2019. | DOI | |
| L Fiamelda, Suprihatin, and Purwoko. Analysis of water and electricity consumption of urea fertilizer industry: case study PT. X. IOP Conference Series: Earth and Environmental Science, 472(1):012034, Apr 2020. | DOI | |
| Berit Franz and Stefan Franz. 1 x 1 der Gase. Physikalische Daten für Wissenschaft und Praxis, 2009. | ||
| Saif ZS Al Ghafri, Stephanie Munro, Umberto Cardella, Thomas Funke, William Notardonato, J. P. Martin Trusler, Jacob Leachman, Roland Span, Shoji Kamiya, Garth Pearce, Adam Swanger, Elma Dorador Rodriguez, Paul Bajada, Fuyu Jiao, Kun Peng, Arman Siahvashi, Michael L. Johns, and Eric F. May. Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities. Energy & Environmental Science, 15(7):2690–2731, 2022. Publisher: Royal Society of Chemistry. | DOI | |
| Jachin Gorre, Fabian Ruoss, Hannu Karjunen, Tero Tynjälä, and Johannes Schaffert. Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation. Applied Energy, 257:, 10 2019. | DOI | |
| Frank Graf, Manuel Götz, Marco Henel, Tanja Schaaf, and Robert Tichler. Technoökonomische Studie von Power-to-Gas-Konzepten. DVGW: Bonn, Germany, 2014. | ||
| Paul Graham, Jenny Hayward, James Foster, and Lisa Havas. GenCost 2019-20. CSIRO publications repository, 2020. | DOI | |
| Maria Grahn, Elin Malmgren, Andrei D Korberg, Maria Taljegard, James E Anderson, Selma Brynolf, Julia Hansson, Iva Ridjan Skov, and Timothy J Wallington. Review of electrofuel feasibility—cost and environmental impact. Progress in Energy, 4(3):032010, jun 2022. | DOI | |
| Alon Grinberg Dana, Oren Elishav, André Bardow, Gennady E. Shter, and Gideon S. Grader. Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysis. Angewandte Chemie International Edition, 55(31):8798–8805, 2016. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201510618. | DOI | |
| PNNL. Hydrogen Tools. 2023. | Link | |
| Philipp D. Hauser, Helen Burmeister, Paul J. Münnich, Wido K. Witecka, and Thomas Mühlpointner. Klimaschutzverträge für die Industrietransformation. Analyse zur Stahlbranche. Technical Report, Agora Energiewende, 2021. | ||
| W.M. (Ed.) Haynes. CRC Handbook of Chemistry and Physics (95th ed.). CRC Press, 2014. | DOI | |
| Karl-Rudolf Hegemann and Ralf Guder. Stahlerzeugung. Springer Fachmedien Wiesbaden, 2020. ISBN 9783658290917. | DOI | |
| Marc Hölling, Matthias Weng, and Sebastian Gellert. Bewertung der Herstellung von Eisenschwamm unter Verwendung von Wasserstoff. Stahl und Eisen, 137(6):47–53, 2017. | ||
| Marius Holst, Stefan Aschbrenner, Tom Smolinka, Christopher Voglstätter, and Gunter Grimm. Cost forecast for low temperature electrolysis – technology driven bottom-up prognosis for PEM and Alkaline water electrolysis systems. Technical Report, Fraunhofer Institute for Solar Energy Systems ISE, 2021. | DOI PDF | |
| ICAO. Sustainable Aviation Fuels Guide. Technical Report, International Civil Aviation Organization (ICAO), 2017. | Link | |
| IEA. Ammonia Technology Roadmap – Towards more sustainable nitrogen fertiliser production. Technical Report, International Energy Agency, 2021. | Link | |
| IEA. Energy needs of L-DAC and S-DAC. Technical Report, International Energy Agency, 2023. | Link | |
| IEA. The Future of Hydrogen. Technical Report, International Energy Agency, 2019. | Link | |
| IEA. Iron and Steel CCS Study (Techno-Economics Integrated Steel Mill). Technical Report, International Energy Agency, 2013. | Link | |
| IEA. Global Hydrogen Review. Technical Report, International Energy Agency, 2021. | Link | |
| IEA Greenhouse Gas R&D Programme. Techno - Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS. feb 2017. | Link | |
| Jussi Ikäheimo, Juha Kiviluoma, Robert Weiss, and Hannele Holttinen. Power-to-ammonia in future North European 100 % renewable power and heat system. International Journal of Hydrogen Energy, 43(36):17295–17308, Sep 2018. | DOI | |
| IRENA. Global hydrogen trade to meet the 1.5°C climate goal: Part III – Green hydrogen cost and potential. Technical Report, International Renewable Energy Agency, 2022. | Link | |
| Eric Jacobasch, Gregor Herz, Christopher Rix, Nils Müller, Erik Reichelt, Matthias Jahn, and Alexander Michaelis. Economic evaluation of low-carbon steelmaking via coupling of electrolysis and direct reduction. Journal of Cleaner Production, 328:129502, Dec 2021. | DOI | |
| Sean M. Jarvis and Sheila Samsatli. Technologies and infrastructures underpinning future CO 2 value chains: A comprehensive review and comparative analysis. Renewable and Sustainable Energy Reviews, 85:46–68, Apr 2018. | DOI | |
| Sarah Jasper and Mahmoud El-Halwagi. A Techno-Economic Comparison between Two Methanol-to-Propylene Processes. Processes, 3(3):684–698, Sep 2015. | DOI | |
| David W. Keith, Geoffrey Holmes, David St. Angelo, and Kenton Heidel. A Process for Capturing CO2 from the Atmosphere. Joule, 2(8):1573–1594, Aug 2018. | DOI | |
| James A Kent. Riegel's handbook of industrial chemistry. Springer, 1974. | ||
| Ali Kiani, Michael Lejeune, Chaoen Li, Jim Patel, and Paul Feron. Liquefied synthetic methane from ambient CO2 and renewable H2 - A technoeconomic study. Journal of Natural Gas Science and Engineering, 94:104079, 2021. | DOI | |
| A. D. Korberg, S. Brynolf, M. Grahn, and I. R. Skov. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renewable and Sustainable Energy Reviews, 142:110861, 2021. | DOI | |
| Eric W. Lemmon, Ian H. Bell, Marcia L. Huber, and Mark O. McLinden. Thermophysical Properties of Fluid System. In Eds. P.J. Linstrom and W.G. Mallard, editors, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, 1997. | DOI | |
| Eric Lewis, Shannon McNaul, Matthew Jamieson, Megan Henriksen, H. Matthews, Liam Walsh, Jadon Grove, Travis Shultz, Timothy Skone, and Robert Stevens. Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies. National Energy Technology Laboratory, April 2022. | DOI | |
| Benjamin Lux, Johanna Gegenheimer, Katja Franke, Frank Sensfuß, and Benjamin Pfluger. Supply curves of electricity-based gaseous fuels in the MENA region. Computers & Industrial Engineering, 162:107647, 2021. | DOI | |
| Benjamin Lux, Niklas Schneck, Benjamin Pfluger, Wolfgang Männer, and Frank Sensfuß. Potentials of direct air capture and storage in a greenhouse gas-neutral European energy system. Energy Strategy Reviews, 45:101012, 2023. | DOI | |
| Kavya Madhu, Stefan Pauliuk, Sumukha Dhathri, and Felix Creutzig. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nature Energy, 6(11):1035–1044, Oct 2021. | DOI | |
| Michael J. Matzen, Mahdi H. Alhajji, and Yasar Demirel. Technoeconomics and Sustainability of Renewable Methanol and Ammonia Productions Using Wind Power-based Hydrogen. Journal of Advanced Chemical Engineering, 2015. | DOI | |
| Jan Michalski, Ulrich Bünger, Fritz Crotogino, Sabine Donadei, Gregor-Sönke Schneider, Thomas Pregger, Karl-Kiên Cao, and Dominik Heide. Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition. International Journal of Hydrogen Energy, 42(19):13427–13443, 2017. Special Issue on The 21st World Hydrogen Energy Conference (WHEC 2016), 13-16 June 2016, Zaragoza, Spain. | DOI | |
| Sarah Milanzi, Carla Spiller, Benjamin Grosse, Lisa Hermann, and Joachim Müller-Kirchenbauer. Technischer Stand und Flexibilität des Power-to-Gas-Verfahrens. 2018. | DOI | |
| M. Molnarne. CHEMSAFE — A Database for Safety Characteristic Data. In Jürgen Gmehling, editor, Software Development in Chemistry 5, 45–48. Berlin, Heidelberg, 1991. Springer Berlin Heidelberg. | ||
| Eric Morgan, James Manwell, and Jon McGowan. Wind-powered ammonia fuel production for remote islands: A case study. Renewable Energy, 72:51–61, 2014. | DOI | |
| National Academies of Sciences, Engineering and Medicine (NASEM). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. The National Academies Press, Washington, DC, 2019. ISBN 978-0-309-48452-7. | DOI | |
| Judit Nyári, Mohamed Magdeldin, Martti Larmi, Mika Järvinen, and Annukka Santasalo-Aarnio. Techno-economic barriers of an industrial-scale methanol CCU-plant. Journal of CO2 Utilization, 39:101166, 2020. | DOI | |
| Carina Oliveira. TNO's Technology Factsheet: Advanced Methanol to olefines process. Technical Report, TNO EnergieTransitie, 2021. | Link | |
| Alexander Otto, Martin Robinius, Thomas Grube, Sebastian Schiebahn, Aaron Praktiknjo, and Detlef Stolten. Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry. Energies, 10(4):451, Apr 2017. | DOI | |
| Mihrimah Ozkan, Saswat Priyadarshi Nayak, Anthony D. Ruiz, and Wenmei Jiang. Current status and pillars of direct air capture technologies. iScience, 25(4):103990, 2022. | DOI | |
| Matthew J Palys and Prodromos Daoutidis. Techno-economic optimization of renewable urea production for sustainable agriculture and CO2 utilization. Journal of Physics: Energy, 6(1):015013, dec 2023. | DOI | |
| Mar Pérez-Fortes, Jan C. Schöneberger, Aikaterini Boulamanti, and Evangelos Tzimas. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy, 161:718–732, Jan 2016. | DOI | |
| Manish Ram, Michael Child, Arman Aghahosseini, Dmitrii Bogdanov, Alena Lohrmann, and Christian Breyer. A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. Journal of Cleaner Production, 199:687–704, Oct 2018. | DOI | |
| Giulia Realmonte, Laurent Drouet, Ajay Gambhir, James Glynn, Adam Hawkes, Alexandre C Köberle, and Massimo Tavoni. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature communications, 10(1):3277, 2019. | ||
| Katharina Rechberger, Andreas Spanlang, Amaia Sasiain Conde, Hermann Wolfmeir, and Christopher Harris. Green Hydrogen?Based Direct Reduction for Low?Carbon Steelmaking. steel research international, 91(11):2000110, Jun 2020. | DOI | |
| A. Sasiain, K. Rechberger, A. Spanlang, I. Kofler, H. Wolfmeir, C. Harris, and T. Bürgler. Green Hydrogen as Decarbonization Element for the Steel Industry. BHM Berg- und Hüttenmännische Monatshefte, 165(5):232–236, Mar 2020. | DOI | |
| Steffen Schemme, Janos Lucian Breuer, Maximilian Köller, Sven Meschede, Fiona Walman, Remzi Can Samsun, Ralf Peters, and Detlef Stolten. H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. International Journal of Hydrogen Energy, 45(8):5395–5414, 2020. | DOI | |
| Lucas Sens, Ulf Neuling, and Martin Kaltschmitt. Capital expenditure and levelized cost of electricity of photovoltaic plants and wind turbines – Development by 2050. Renewable Energy, 185:525–537, Feb 2022. | DOI | |
| Wei Shen, Xi Chen, Jing Qiu, Jennifier A Hayward, Saad Sayeef, Peter Osman, Ke Meng, and Zhao Yang Dong. A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133:110301, Nov 2020. | DOI | |
| Robert Socolow, Michael Desmond, Roger Aines, Jason Blackstock, Olav Bolland, Tina Kaarsberg, Nathan Lewis, Marco Mazzotti, Allen Pfeffer, Karma Sawyer, Jeffrey Siirola, Berend Smit, and Jennifer Wilcox. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. Technical Report, American Physical Society, 06 2011. | Link PDF | |
| Alba Soler, Victor Gordillo, William Liley, Patrick Schmidt, Werner Weindorf, Tom Houghton, and Stefano Dell'Orco. E-Fuels: A techno-economic assessment of European domestic production and imports towards 2050. Nov 2022. | Link | |
| Vincenzo Spallina, Ildefonso Campos Velarde, José Antonio Medrano Jimenez, Hamid Reza Godini, Fausto Gallucci, and Martin Van Sint Annaland. Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): Advances in benchmark technologies. Energy Conversion and Management, 154:244–261, 2017. | DOI | |
| Boris Stolz, Maximilian Held, Gil Georges, and Konstantinos Boulouchos. Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe. Nature Energy, 7(2):203–212, 2022. | DOI | |
| Roy Tarh Takunju. Life cycle assessment of the production of a solar MTG fuel based on electrochemical hydrogen production with energy supply by a PV/CSP hybrid solar power plant. Master's thesis, Ruhr-Universität Bochum, Dezember 2021. | Link | |
| Nils Tenhumberg and Karsten Büker. Ecological and Economic Evaluation of Hydrogen Production by Different Water Electrolysis Technologies. Chemie Ingenieur Technik, 92(10):1586–1595, Aug 2020. | DOI PDF | |
| M. Thema, F. Bauer, and M. Sterner. Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112:775–787, 2019. | DOI | |
| Falko Ueckerdt, Christian Bauer, Alois Dirnaichner, Jordan Everall, Romain Sacchi, and Gunnar Luderer. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change, 11:1–10, 05 2021. | DOI | |
| Eero Vartiainen, Christian Breyer, David Moser, Eduardo Román Medina, Chiara Busto, Gaëtan Masson, Elina Bosch, and Arnulf Jäger-Waldau. True Cost of Solar Hydrogen. Solar RRL, 6(5):2100487, Sep 2022. | DOI PDF | |
| Valentin Vogl, Max Åhman, and Lars J. Nilsson. Assessment of hydrogen direct reduction for fossil-free steelmaking. Journal of Cleaner Production, 203:736–745, Dec 2018. | DOI | |
| Michael Wang, Amgad Elgowainy, Uisung Lee, Kwang H. Baek, Sweta Balchandani, Pahola T. Benavides, Andrew Burnham, Hao Cai, Peter Chen, Yu Gan, Ulises R. Gracida-Alvarez, Troy R. Hawkins, Tai-Yuan Huang, Rakesh K. Iyer, Saurajyoti Kar, Jarod C. Kelly, Taemin Kim, Christopher Kolodziej, Kyuha Lee, Xinyu Liu, Zifeng Lu, Farhad Masum, Michele Morales, Clarence Ng, Longwen Ou, Tuhin Poddar, Krishna Reddi, Siddharth Shukla, Udayan Singh, Lili Sun, Pingping Sun, Tom Sykora, Pradeep Vyawahare, and Jingyi Zhang. Greenhouse gases, Regulated Emissions, and Energy use in Technologies Model ® (2023 Excel). oct 2023. | DOI | |
| Ernst Worrell, Lynn Price, Maarten Neelis, Christina Galitsky, and Nan Zhou. World Best Practice Energy Intensity Values for Selected Industrial Sectors. Technical Report, Lawrence Berkeley National Laboratory, 2007. | Link | |
| Martin Wörtler, Felix Schuler, Nicole Voigt, Torben Schmidt, Peter Dahlmann, Hans Bodo Lüngen, and Jean-Theo Ghenda. Steel's Contribution to a Low-Carbon Europe 2050. Technical Report, The Boston Consulting Group, 2013. | Link | |
| Jonathon Yates, Rahman Daiyan, Robert Patterson, Renate Egan, Rose Amal, Anita Ho-Baille, and Nathan L. Chang. Techno-economic Analysis of Hydrogen Electrolysis from Off-Grid Stand-Alone Photovoltaics Incorporating Uncertainty Analysis. Cell Reports Physical Science, 1(10):100209, Oct 2020. | DOI PDF | |
| Jinrui Zhang, Hans Meerman, René Benders, and André Faaij. Comprehensive review of current natural gas liquefaction processes on technical and economic performance. Applied Thermal Engineering, 166:114736, 2020. | DOI | |
| Zhitong Zhao, Jingyang Jiang, and Feng Wang. An economic analysis of twenty light olefin production pathways. Journal of Energy Chemistry, 56:193–202, 2021. | DOI |